为进行科学实验,观测小球A、B在两条相交成角的直线型轨道上运动的情况,如图(乙)所示,运动开始前,A和B分别距O点3m和1m,后来它们同时以每分钟4m的速度各沿轨道按箭头的方向运动。问:(1)运动开始前,A、B的距离是多少米?(结果保留三位有效数字)。(2)几分钟后,两个小球的距离最小?
某工厂对某产品的产量与单位成本的资料分析后有如下数据:
(Ⅰ) 画出散点图,并判断产量与单位成本是否线性相关。(Ⅱ) 求单位成本y与月产量x之间的线性回归方程。(其中已计算得:,结果保留两位小数)
已知曲线C1:,曲线C2:.(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线,.写出,的参数方程.与公共点的个数和C1与C2公共点的个数是否相同?说明你的理由.
已知,分别求,,,然后归纳猜想一般性结论,并证明你的结论.
已知非零实数,分别为与,与的等差中项,`且满足,求证:非零实数成等比数列.
已知实数满足:,求的取值范围.