小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟。设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示。 (1)小林的速度为 ▲ 米/分钟 ,a= ▲ ,小林家离图书馆的距离为 ▲ 米; (2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中 画出y1(米)与x(分钟 )的函数图象; (3)小华出发几分钟后两人在途中相遇?
第题
南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价万元,每辆汽车的销售利润为万元.(销售利润销售价进货价)(1)求与的函数关系式;在保证商家不亏本的前提下,写出的取值范围;(2)假设这种汽车平均每周的销售利润为万元,试写出与之间的函数关系式;(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
(本题满分10分)某地震救援队探测出某建筑物废墟下方点处有生命迹象,已知废墟一侧地面上两探测点A,B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果保留根号)
(本题满分10分) 如图,有一段斜坡BC长为10米,坡角∠CBD=10°,为使残疾人的轮椅车通行更省力,现准备把坡角降为5°(1)求斜坡新起点A到原起点B的距离;(2)求坡高CD(结果保留3个有效数字).参考数据:=0.1736 , =0.9848, =0.1763.
如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连结BE、CF. ⑴ 求证:△BDF≌△CDE;⑵ 若AB=AC,求证:四边形BFCE是菱形.
九年级(1)班共有45名同学,为了竞选出正、副班长各1名,先选举3名同学作为“班长候选人”.⑴小明是该班一名同学,求小明被选举为“班长候选人”的概率;⑵经选举,该班一名男同学和两名女同学被确定为“班长候选人”参加正、副班长竞选,请用列表法或画树状图法求出两名女生同时当选正、副班长的概率.