如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.
(1)解分式方程: (2)如图,点A,B在数轴上,它们所对应的数分别是和,且点A,B到原点的距离相等,求的值.
如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合. (1)证明不论E、F在BC、CD上如何滑动,总有BE=CF; (2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.
某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支). (1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式; (2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜; (3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
(1)在图1中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),请写出图中的顶点C的坐标( _________ , _________ ). (2)在图2中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),求出图中的标点C的坐标,并说明理由(C点坐标用含c,d,e的代数式表示). 归纳与发现 (3)通过对图1,2的观察,你会发现:图3中的平行四边形ABCD的顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)时,则横坐标a,c,m,e之间的等量关系为 _________ .
已知一次函数图象如图: (1)求一次函数的解析式; (2)若点P为该一次函数图象上一点,且点A为该函数图象与x轴的交点,若S△PAO=6,求点P的坐标.