已知二次函数满足条件:①是的两个零点;②的最小值为(1)求函数的解析式;(2)设数列的前项积为,且 ,,求数列的前项和(3)在(2)的条件下,当时,若是与的等差中项,试问数列中第几项的值最小?并求出这个最小值。
已知椭圆的上顶点为,左右焦点分别为,直线与圆:相切,若椭圆上点使得成等比数列 求
为椭圆上任一点(不是长轴顶点),过点的切线与过长轴顶点与长轴垂直的直线相交于点,求证以线段为直径的圆过这个椭圆的两个焦点
在第一象限,且是椭圆上的一点,△的内切圆半径是,求的坐标
已知为椭圆的左右焦点,抛物线以为顶点,为焦点,设为椭圆与抛物线的一个交点,椭圆离心率为,且,求的值
在棱长为的正方体中,是的中点,若都在上 且,是上的点,求四面体的体积