(本小题满分14分)已知:有穷数列{an}共有2k项(整数k≥2 ),a1="2" ,设该数列的前n项和为 Sn且满足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.(1)求{an}的通项公式;(2)设bn=log2an,求{bn}的前n项和Tn;(3)设cn=,若a=2,求满足不等式 + +…++≥时k的最小值.
已知函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<)的部分图象如图所示. (1)求函数f(x)的解析式; (2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a-c)cos B=bcos C,求f的取值范围.
已知函数f(x)=sin2x+sin xcos x,x∈. (1)求f(x) 的零点; (2)求f(x)的最大值和最小值.
已知a=(sin α,1), b=(cos α,2),α∈. (1)若a∥b,求tan α的值; (2)若a·b=,求sin 的值.
已知函数f(x)=ax+x2,g(x)=xln a,a>1. (1)求证:函数F(x)=f(x)-g(x)在(0,+∞)上单调递增; (2)若函数y=-3有四个零点,求b的取值范围; (3)若对于任意的x1,x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.
已知函数f(x)=ln ax-(a≠0). (1)求函数f(x)的单调区间及最值; (2)求证:对于任意正整数n,均有1+(e为自然对数的底数); (3)当a=1时,是否存在过点(1,-1)的直线与函数y=f(x)的图象相切?若存在,有多少条?若不存在,请说明理由.