(本小题满分14分)已知:有穷数列{an}共有2k项(整数k≥2 ),a1="2" ,设该数列的前n项和为 Sn且满足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.(1)求{an}的通项公式;(2)设bn=log2an,求{bn}的前n项和Tn;(3)设cn=,若a=2,求满足不等式 + +…++≥时k的最小值.
(本小题满分12分)如图,三棱柱的所有棱长都相等,且底面,为的中点,(Ⅰ)求证:∥(Ⅱ)求证:平面.
(本小题满分10分)设集合 ,(1)求集合;(2)若不等式的解集为,求的值
(本小题满分16分) 定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界.已知函数;.(1)当a=1时,求函数在上的值域,并判断函数在上是否为有界数,请说明理由;(2)若函数在上是以3为上界的有界函数,求实数a的取值范围;(3)若,函数在上的上界是,求的取值范围.
(本小题满分14分)已知函数.(1)若为的极值点,求的值;(2)若的图象在点()处的切线方程为,( 3 )求在区间上的最大值;(4)求函数()的单调区间.
(本小题满分14分)三棱柱中,侧棱与底面垂直,,,分别是,的中点.(1)求证:平面;(2)求证:平面;(3)求二面角的余弦值.