(本小题满分14分)三棱柱中,侧棱与底面垂直,,,分别是,的中点.(1)求证:平面;(2)求证:平面;(3)求二面角的余弦值.
平面内给定两个向量(1)求;(2)若,求实数的值。
已知函数在 处的切线方程为.(1)求函数的解析式;(2)若关于的方程恰有两个不同的实根,求实数的值 ;(3)数列满足,,求的整数部分.
已知函数(为常数,),且数列是首项为,公差为的等差数列. (1) 若,当时,求数列的前项和; (2)设,如果中的每一项恒小于它后面的项,求的取值范围.
已知中心在原点,焦点在x轴上,离心率为的椭圆过点(,).(1)求椭圆的方程;(2)设不过原点的直线与该椭圆交于、两点,满足直线,,的斜率依次成等比数列,求面积的取值范围.
如图,中,侧棱与底面垂直,,,点分别为和的中点.(1)证明:;(2)求二面角的正弦值.