(本小题满分12分)甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件的二倍。(1)从甲、乙、丙加工的零件中各取一件检验,示至少有一件一等品的概率;(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为X,求EX。
“上海世博会”将于2010年5月1日至10月31日在上海举行。世博会“中国馆·贵宾厅”作为接待中外贵宾的重要场所,其中陈列的艺术品是体现兼容并蓄、海纳百川的重要文化载体,为此,上海世博会事物协调局将举办“中国2010年上海世博会‘中国馆·贵宾厅’艺术品方案征集”活动.某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应征,假设这四件代表作中中国画、书法、油画入选“中国馆·贵宾厅”的概率均为,陶艺入选“中国馆·贵宾厅”的概率为.假定这四件作品是否入选相互没有影响. (1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆·贵宾厅”的概率; (2)设该地美术馆选送的四件代表作中入选“中国馆·贵宾厅”的作品件数为随机变量,求的数学期望.
已知向量. (1)求函数的最大值; (2)在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,且△ABC的面积为3,a的值.
己知. (Ⅰ)若,函数在其定义域内是增函数,求的取值范围; (Ⅱ)当时,证明函数只有一个零点; (Ⅲ)若的图象与轴交于两点,中点为,求证:.
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆相交于不同的两点. (Ⅰ)求椭圆的方程; (Ⅱ)是否存在直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
某商店投入38万元经销某种纪念品,经销期60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第天的利润(单位:万元,),记第天的利润率,例如 (Ⅰ)求的值; (Ⅱ)求第天的利润率; (Ⅲ)该商店在经销此纪品期间,哪一天的利润率最大?并求该天的利润率。