在△ABC中,的垂直平分线分别交AB,AC于E,E(图一),沿DE将△ADE折起,使得平面ADE⊥平面BDEC(图二)(1)若F是AB的中点,求证:平面ACD⊥平面ADE(2)P是AC上任意一点,求证:平面ACD⊥平面PBE(3)P是AC上一点,且AC⊥平面PBE,求二面角P-BE-C的大小
(本小题满分12分) 如图,已知直平行六面体ABCD-A1B1C1D1中,AD⊥BD,AD=BD=a,E是CC1的中点,A1D⊥BE. (I)求证:A1D⊥平面BDE; (II)求二面角B―DE―C的大小;
(本小题满分12分) 已知函数. (1)求的值域和最小正周期; (2)设,且,求的值. .
(本小题满分10分) 在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球. 求: (1)最多取两次就结束的概率; (2)整个过程中恰好取到2个白球的概率;
(本小题14分)设函数 (1)若时函数有三个互不相同的零点,求的范围; (2)若函数在内没有极值点,求的范围; (3)若对任意的,不等式在上恒成立,求实数的取值范围.
(本小题13分)已知定点及椭圆,过点的动直线与该椭圆相交于两点. (1)若线段中点的横坐标是,求直线的方程; (2)在轴上是否存在点,使为常数?若存在,求出点的坐标;如果不存在,请说明理由.