甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3道题,每人答对其中2题就停止答题,即为闯关成功。已知6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是。(Ⅰ)求甲、乙至少有一人闯关成功的概率;(Ⅱ)设乙答对题目的个数为,求的方差;(Ⅲ)设甲答对题目的个数为,求的分布列及数学期望。
(本小题满分分)选修:坐标系与参数方程选讲 在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为 (为参数),与分别交于. (Ⅰ)写出的平面直角坐标系方程和的普通方程; (Ⅱ)若成等比数列,求的值.
(本小题满分10分)选修4-1:几何证明选讲 如图,在中,是的角平分线,的外接圆交于点,. (Ⅰ)求证:; (Ⅱ)当,时,求的长.
(本小题满分12分)已知,设函数. (Ⅰ)若在上无极值,求的值; (Ⅱ)若存在,使得是在[0, 2]上的最大值,求t的取值范围; (Ⅲ)若(为自然对数的底数)对任意恒成立时m的最大值为1,求t的取值范围.
(本小题满分12分)如图,抛物线:与椭圆:在第一象限的交点为,为坐标原点,为椭圆的右顶点,的面积为. (Ⅰ)求抛物线的方程; (Ⅱ)过点作直线交于、两点,射线、分别交于、两点,记和的面积分别为和,问是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分)如图,在中,已知在上,且又平面. (Ⅰ)求证:⊥平面; (Ⅱ)求二面角的余弦值.