请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.(1)若广告商要求包装盒侧面积S(cm)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点. (1)求证:平面BCE⊥平面CDE; (2)求二面角B-EF-D的余弦值.
设函数. (1)若方程f(x)=3x在(1,2)上有根,求a的取值范围; (2)设,若对任意的,都有,求a的取值范围
设函数直线与函数f(x)图像相邻两交点的距离为. (1)求的值; (2)若g(x)=af(x)+b在上的最大值为,最小值为1,求a+b的值.
设,g(x)=|x|+|6-x|,令F(x)=f(x)+g(x),若关于a的方程有且仅有四个不等实根,则m的取值范围为.
已知的三边长a,b,c成等差数列,且则实数b的取值范围是.