已知关于x的二次函数f(x)=ax2-4bx+1.设集合P={-1,1,2,3,4,5}和Q={-2,-1,1,2,3,4},分别从集合P和Q中任取一个数作为a和b的值,求函数y=f(x)在区间[1,+∞)上是增函数的概率.
(本小题满分13分)省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时)的关系为,其中是与气象有关的参数,且,若用每天的最大值为当天的综合放射性污染指数,并记作. (1)令,,求t的取值范围; (2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?
(本小题满分14分)已知椭圆的方程为:,其焦点在轴上,离心率. (1)求该椭圆的标准方程; (2)设动点满足,其中M,N是椭圆上的点,直线OM与ON的斜率之积为,求证:为定值. (3)在(2)的条件下,问:是否存在两个定点,使得为定值?若存在,给出证明;若不存在,请说明理由.
(本小题满分13分)如图,四棱锥的底面是正方形,⊥平面,,点E是SD上的点,且. (1)求证:对任意的,都有AC⊥BE; (2)若二面角C-AE-D的大小为,求的值.
.(本小题满分13分)设,其中为正实数. (1)当时,求的极值点; (2)若为上的单调函数,求的取值范围.
.(本小题满分13分)如图,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上. (1)求渔船甲的速度; (2)求的值.