已知数列中中,(1)求证:数列是等比数列,并求数列的通项公式(2)若数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围.
设函数.(Ⅰ)求的单调区间;(Ⅱ)若当时,设函数图象上任意一点处的切线的倾斜角为,求的取值范围;(Ⅲ)若关于的方程在区间[0,2]上恰好有两个相异的实根,求实数的取值范围。
已知函数且是的两个极值点,,(1)求的取值范围;(2)若,对恒成立。求实数的取值范围;
设函数 (Ⅰ)求函数的极值点;(Ⅱ)当p>0时,若对任意的x>0,恒有,求p的取值范围;(Ⅲ)证明:
设函数.(Ⅰ)若x=时,取得极值,求的值;(Ⅱ)若在其定义域内为增函数,求的取值范围;(Ⅲ)设,当=-1时,证明在其定义域内恒成立,并证明().
设函数,,其中|t|≤1,将f(x)的最小值记为g(t).(1)求g(t)的表达式;(2)对于区间[-1,1]中的某个t,是否存在实数a,使得不等式g(t)≤成立?如果存在,求出这样的a及其对应的t;如果不存在,请说明理由.