(本小题满分14分)已知函数f(x)满足对任意实数x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.(1)求f(1)的值;(2)证明:对一切大于1的正整数t,恒有f(t)>t;(3)试求满足f(t)=t的整数的个数,并说明理由.
(本小题满分10分)选修4-1《几何证明选讲》.已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点(Ⅰ)求证:BD平分∠ABC(Ⅱ)若AB=4,AD=6,BD=8,求AH的长.
(本小题满分12分)已知函数f(x)=-x (e为自然对数的底数).(Ⅰ)求f(x)的最小值;(Ⅱ)不等式f(x)>ax的解集为P,若M={x|≤x≤2}且M∩P≠,求实数a的取值范围;(Ⅲ)已知n∈N﹡,且=(t为常数,t≥0),是否存在等比数列{},使得b1+b2+…=?若存在,请求出数列{}的通项公式;若不存在,请说明理由.
(本小题满分12分)已知椭圆C:(a>b>0)的离心率为,其左、右焦点分别是F1、F2,点P是坐标平面内的一点,且|OP|=,·=(点O为坐标原点).(Ⅰ)求椭圆C的方程;(Ⅱ)直线y=x与椭圆C在第一象限交于A点,若椭圆C上两点M、N使+=λ,λ∈(0,2)求△OMN面积的最大值.
(本小题满分12分)将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=.(Ⅰ)求证:DE⊥AC;(Ⅱ)求DE与平面BEC所成角的正弦值;(Ⅲ)直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,不存在请说明理由.
(本小题满分12分)某班主任为了解所带班学生的数学学习情况,从全班学生中随机抽取了20名学生,对他们的数学成绩进行统计,统计结果如图. (Ⅰ)求x的值和数学成绩在110分以上的人数;(Ⅱ)从数学成绩在110分以上的学生中任意抽取3人,成绩在130分以上的人数为ξ,求ξ的期望.