(已知数列是等差数列, ;数列的前n项和是,且.(Ⅰ) 求数列的通项公式; (Ⅱ) 求证:数列是等比数列;(Ⅲ) 记,求的前n项和.
已知集合。(1)求集合;(2)若,求实数a的取值范围。
已知,设曲线在点处的切线为。(1)求实数的值;(2)设函数,其中。求证:当时,。
已知函数。(1)当时,求的单调区间、最大值;(2)设函数,若存在实数使得,求m的取值范围。
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲、乙两个盒内各任取2个球。(1)求取出的4个球中没有红球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望。
某企业主要生产甲、乙两种品牌的空调,由于受到空调在保修期内维修费等因素的影响,企业生产每台空调的利润与该空调首次出现故障的时间有关,甲、乙两种品牌空调的保修期均为3年,现从该厂已售出的两种品牌空调中各随机抽取50台,统计数据如下:
将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌空调中随机抽取一台,求首次出现故障发生在保修期内的概率;(2)若该厂生产的空调均能售出,记生产一台甲品牌空调的利润为X1,生产一台乙品牌空调的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌空调销量相当,但由于资金限制,只能生产其中一种品牌空调,若从经济效益的角度考虑,你认为应该生产哪种品牌的空调?说明理由。