某人沿一条折线段组成的小路前进,从到,方位角(从正北方向顺时针转到方向所成的角)是,距离是3km;从到,方位角是110°,距离是3km;从到,方位角是140°,距离是()km.试画出大致示意图,并计算出从A到D的方位角和距离(结果保留根号).
一河南旅游团到安徽旅游.看到安徽有很多特色食品,其中水果类较有名气的有:怀远石榴、砀山梨、徽州青枣等19种,点心类较有名气的有:一品玉带糕、徽墨酥、八公山大救驾等38种,小吃类较有名气的有:符离集烧鸡、无为熏鸭、合肥龙虾等57种.该旅游团的游客决定按分层抽样的方法从这些特产中买6种带给亲朋品尝.(Ⅰ)求应从水果类、点心类、小吃类中分别买回的种数;(Ⅱ)若某游客从买回的6种特产中随机抽取2种送给自己的父母,①列出所有可能的抽取结果;②求抽取的2种特产均为小吃的概率.
已知函数f(x)=sin2ωx+sinωxcosωx(ω>0)的最小正周期为π,(Ⅰ)求ω的值及函数f(x)的单调增区间;(Ⅱ)求函数f(x)在[0,]上的值域.
已知不等式2|x-3|+|x-4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.
对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.(Ⅰ)当函数f(x)=mlnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,试比较g(a)与g(1)的大小;求证:对于任意大于1的实数x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))>g(lnx1)+g(lnx2)+ +g(lnxn).
已知圆C:的半径等于椭圆E:(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x-的距离为-,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|-|BF|=|BM|-|AM|.