某人沿一条折线段组成的小路前进,从到,方位角(从正北方向顺时针转到方向所成的角)是,距离是3km;从到,方位角是110°,距离是3km;从到,方位角是140°,距离是()km.试画出大致示意图,并计算出从A到D的方位角和距离(结果保留根号).
对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.(1)已知函数,试判断是否为“局部奇函数”?并说明理由;(2)若为定义域上的“局部奇函数”,求实数m的取值范围.
已知椭圆(>>0)的离心率,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点,已知点的坐标为( ,0),点(0,)在线段的垂直平分线上,且,求的值.
在数列和中,已知.(1)求数列和的通项公式;(2)设,求数列的前n项和.
已知四棱锥的底面是等腰梯形,且分别是的中点.(1)求证:;(2)求二面角的余弦值.
已知向量,,且. (1)将表示为的函数,并求的单调递增区间;(2)已知分别为的三个内角对应的边长,若,且,,求的面积.