阅读材料:如图23—1,的周长为,面积为S,内切圆的半径为,探究与S、之间的关系.连结,,又,,∴∴解决问题:(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;(2)若四边形存在内切圆(与各边都相切的圆),如图23—2且面积为,各边长分别为,,,,试推导四边形的内切圆半径公式;(3)若一个边形(为不小于3的整数)存在内切圆,且面积为,各边长分别为,,,,,合理猜想其内切圆半径公式(不需说明理由).
某学校九年级的学生去旅游,在风景区看到一棵古松,不知这棵古松有多高,下面是他们的一段对话: 甲:我站在此处看树顶仰角为45°。 乙:我站在此处看树顶仰角为30°。 甲:我们的身高都是1.5m。 乙:我们相距20m。 请你根据两位同学的对话,参考图7计算这棵古松的高度。(参考数据≈1.414,≈1.732,结果保留两位小数)。 图7
学校在艺术周上,要求学生制作一个精美的轴对称图形,请你用所给出的几何图形:○○△△ (两个圆,两个等边三角形,两条线段)为构件,构思一个独特,有意义的轴对称图形,并写上一句简要的解说词。
请你先化简分式
在等腰△ABC中,AB=AC=5,BC=6.动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC上?(2)当MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式.当x为何值时,y的值最大,最大值是多少?
甲、乙两人分别乘不同的冲锋舟同时从A地逆流而上前往B地.甲所乘冲锋舟在静水中的速度为千米/分钟,甲到达B地立即返回.乙所乘冲锋舟在在静水中的速度为千米/分钟.已知A、B两地的距离为20千米,水流速度为千米/分钟,甲、乙乘冲锋舟行驶的距离y(千米)与所用时间x(分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y与x之间的函数关系式.(2)甲、乙两人同时出发后,经过多少分钟相遇?.