(本小题满分12分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(1)打了两局就停止比赛的概率;(2)打满3局比赛还未停止的概率;(3)比赛停止时已打局数的分布列与期望.
选修4一1:几何证明选讲 如图,是圆的直径,弦于点,是延长线上一点,切圆于,交于. (1)求证:为等腰三角形; (2)求线段的长.
已知函数(). (1)若,求曲线在点处的切线方程; (2)若不等式对任意恒成立,求实数的取值范围;
已知椭圆的两个焦点为、,离心率为,直线与椭圆相交于、两点,且满足,,为坐标原点. (1)求椭圆的方程; (2)证明:的面积为定值.
如图,在四棱锥中,⊥平面,, ,,,为线段上的点, (1)证明:⊥平面; (2)若是的中点,求与平面所成的角的正切值.
下面的茎叶图记录了甲、乙两代表队各名同学在一次英语听力比赛中的成绩(单位:分). 已知甲代表队数据的中位数为,乙代表队数据的平均数是. (1)求,的值; (2)若分别从甲、乙两队随机各抽取名成绩不低于分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率; (3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).