(本小题满分12分)已知等差数列满足:,.的前n项和为(Ⅰ)求及; (Ⅱ)令bn=(nN*),求数列的前n项和.
设等差数列{}的前n项和为Sn,且S4=4S2,. (1)求数列{}的通项公式; (2)设数列{}满足,求{}的前n项和Tn; (3)是否存在实数K,使得Tn恒成立.若有,求出K的最大值,若没有,说明理由.
已知向量=,=,定义函数f(x)=·. (1)求函数f(x)的表达式,并指出其最大值和最小值; (2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC的面积S.
巳知椭圆的离心率是. ⑴若点P(2,1)在椭圆上,求椭圆的方程; ⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.
定义在实数集上的函数. ⑴求函数的图象在处的切线方程; ⑵若对任意的恒成立,求实数m的取值范围.
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点. ⑴求证:平面PAD⊥面PBD; ⑵当Q在什么位置时,PA∥平面QBD?