已知函数 f x = sin 2 x - 2 sin 2 x
(I)求函数 f x 的最小正周期。 (II) 求函数 f x 的最大值及 f x 取最大值时 x 的集合。
(满分12分)某专卖店销售一新款服装,日销售量(单位为件)f (n) 与时间n(1≤n≤30、nÎ N*)的函数关系如下图所示,其中函数f (n) 图象中的点位于斜率为 5 和-3 的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大. (Ⅰ)求f (n) 的表达式,及前m天的销售总数; (Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过 400 件时,市面上会流行该款服装,而日销售量连续下降并低于 30 件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过 10 天?请说明理由.
(满分12分)某班有两个课外活动小组,其中第一小组有足球票6张,排球票 4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,和乙从第二小组的10张票中任抽1张.(Ⅰ)两人都抽到足球票的概率是多少?(Ⅱ)两人中至少有1人抽到足球票的概率是多少?
(满分12分)正方体ABCD-A1B1C1D1 的棱长为 2,且AC 与BD 交于点O,E 为棱DD1 中点,以A 为原点,建立空间直角坐标系A-xyz,如图所示.(Ⅰ)求证:B1O⊥平面EAC;(Ⅱ)若点 F 在 EA 上且 B1F⊥AE,试求点 F 的坐标;(Ⅲ)求二面角B1-EA-C 的正弦值.
(满分12分)已知△ABC中,2 tan A = 1,3 tan B = 1,且最长边的长度为 1,求角C的大小和最短边的长度.
如图,直角梯形中,椭圆以为焦点且过点,(1)建立适当的直角坐标系,求椭圆的方程;(2)若点E满足是否存在斜率的直线与椭圆交于两点,且,若存在,求的取值范围;若不存在,说明理由。