为了对某课题进行研究,用分层抽样方法从三所高校 A , B , C 的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(I)求 x , y ; (II)若从高校 B , C 抽取的人中选2人作专题发言,求这二人都来自高校 C 的概率。
(本小题满分12分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下: (1)试确定x,y的值,并写出该样本的众数和中位数(不必写出计算过程); (2)完成相应的频率分布直方图. (3)求出样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.
(本小题满分12分)设命题是减函数,命题:关于 的不等式的解集为,如果“或”为真命题,“且”为假命题,求 实数的取值范围.
(本小题满分10分)国家有甲,乙两个射击队,若两个队共进行了8次热身赛, 各队的总成绩见下表:
分别求两个队总成绩的样本平均数和样本方差,根据计算结果,若选一个代表队参加奥运会比赛,你认为应该选哪一个队?
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界. (1)判断函数是否是有界函数,请写出详细判断过程; (2)试证明:设,若在上分别以为上界, 求证:函数在上以为上界; (3)若函数在上是以3为上界的有界函数, 求实数的取值范围.
已知,且是方程的两根. (1)求的值.(2)求的值.