(本小题满分12分)港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站为31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问此时轮船离港口A还有多远?
设有两个命题: (1)关于x的不等式的解集是R; (2)函数是减函数; 若这两个命题都是真命题,求m的取值范围.
知圆C1的方程为(x-2)2+(y-1)2=,椭圆C2的方程为=1(a>b>0),C2的离心率为,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程.
正方体ABCD-A1B1C1D1中,棱长为,M为正方形DCC1D1的中心,E、F分别为A1D1、BC的中点 (1)求证:AM⊥平面B1FDE; (2)求点A到平面EDFB1的距离; (3)求二面角A-DE-F的大小。
学校食堂定期向精英米业以每吨1500元的价格购买大米,每次购买大米需支付运输费用100元,已知食堂每天需食用大米1吨,储存大米的费用为每吨每天2元,假设食堂每次均在用完大米的当天购买. (Ⅰ)问食堂每隔多少天购买一次大米,能使平均每天所支付的费用最少? (Ⅱ)若购买量大,精英米业推出价格优惠措施,一次购买量不少于20吨时可享受九五折优惠,问食堂能否接受此优惠措施?请说明理由.
如图,已知:射线为,射线为,动点在的内部,于,于,四边形的面积恰为. (1)当为定值时,动点的纵坐标是横坐标的函数,求这个函数的解析式; (2)根据的取值范围,确定的定义域.