如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (1)证明PA//平面BDE; (2)求二面角B—DE—C的平面角的余弦值;(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
已知三棱锥中,,,,为上一点,,分别为的中点.(1)证明:;(2)求与平面所成角的大小.
三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.(1)求恰有二人破译出密码的概率;(2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
已知圆C的圆心C(-1,2),且圆C经过原点。(1)求圆C的方程(2)过原点作圆C的切线,求切线的方程。(3)过点的直线被圆C截得的弦长为,求直线的方程。
设函数.(1)求在上的值域.(2)设A,B,C为ABC的三个内角,若角C满足且边,求角.
函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数,在定义域中存在使,,且满足以下3个条件。(1)是定义域中的数,,则(2),(是一个正的常数)(3)当时,。证明:(1)是奇函数;(2)是周期函数,并求出其周期;(3)在内为减函数。