如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (1)证明PA//平面BDE; (2)求二面角B—DE—C的平面角的余弦值;(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
求满足下列条件的直线方程:(1)经过点,且与直线垂直;(2) 经过点,且在两坐标轴上的截距相等.
(本小题满分14分) 已知函数,(e为自然对数的底数) (Ⅰ)当a=1时,求函数f(x)的单调区间; (Ⅱ)若函数f(x)在上无零点,求a的最小值; (III)若对任意给定的,在上总存在两个不同的,使得成立,求a的取值范围.
(本小题满分13分)若集合具有以下性质:①②若,则,且时,.则称集合是“好集”.(Ⅰ)分别判断集合,有理数集Q是否是“好集”,并说明理由;(Ⅱ)设集合是“好集”,求证:若,则;(Ⅲ)对任意的一个“好集”A,分别判断下面命题的真假,并说明理由.命题:若,则必有;命题:若,且,则必有;
(本小题满分12分)在第9届校园文化艺术节棋类比赛项目报名过程中,我校高二(2)班共有16名男生和14名女生预报名参加,调查发现,男、女选手中分别有10人和6人会围棋.(I)根据以上数据完成以下22列联表:
并回答能否在犯错的概率不超过0.10的前提下认为性别与会围棋有关?参考公式:其中n=a+b+c+d参考数据:
(Ⅱ)若从会围棋的选手中随机抽取3人成立该班围棋代表队,则该代表队中既有男又有女的概率是多少?(Ⅲ)若从14名女棋手中随机抽取2人参加棋类比赛,记会围棋的人数为,求的期望.
(本小题满分12分)设二次函数在区间上的最大值、最小值分别是M、m,集合. (Ⅰ)若,且,求M和m的值;(Ⅱ)若,且,记,求的最小值.