(本小题12分)设椭圆右焦点为,它与直线相交于、两点,与轴的交点到椭圆左准线的距离为,若椭圆的焦距是与的等差中项.⑴求椭圆离心率;⑵设点与点关于原点对称,若以为圆心,为半径的圆与相切,且求椭圆的方程.
设,函数.(1)讨论函数的单调区间和极值;(2)已知和是函数的两个不同的零点,求的值并证明:.
已知圆,圆,圆,关于直线对称.(1)求直线的方程;(2)直线上是否存在点,使点到点的距离减去点到点的距离的差为,如果存在求出点坐标,如果不存在说明理由.
如图,三棱锥中,底面,,,为的中点,为的中点,点在上,且.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.
文科班某同学参加广东省学业水平测试,物理、化学、生物获得等级和获得等级不是的机会相等,物理、化学、生物获得等级的事件分别记为、、,物理、化学、生物获得等级不是的事件分别记为、、.(1)试列举该同学这次水平测试中物理、化学、生物成绩是否为的所有可能结果(如三科成绩均为记为);(2)求该同学参加这次水平测试获得两个的概率;(3)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于,并说明理由.
在△中,角、、的对边分别为,若,且.(1)求的值; (2)若,求△的面积.