(本小题12分)设椭圆右焦点为,它与直线相交于、两点,与轴的交点到椭圆左准线的距离为,若椭圆的焦距是与的等差中项.⑴求椭圆离心率;⑵设点与点关于原点对称,若以为圆心,为半径的圆与相切,且求椭圆的方程.
已知函数. (1)当时,求的最小值; (2)若函数在区间上为单调函数,求实数的取值范围; (3)当时,不等式恒成立,求实数的取值范围.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (1)求椭圆的方程; (2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当时,求实数取值范围.
已知向量,,函数 (1)若,求的值; (2)在锐角中,角的对边分别是,且满足, 求的取值范围.
已知三棱锥中,面,,,为上一点,,分别为的中点. (1)证明:; (2)求与平面所成角的大小.
(1)已知等差数列{an}的公差d > 0,且是方程的两根,求数列通项公式 (2)设,求数列{bn}的前n项和.