(本小题12分)已知数列满足:, ,记,为数列的前项和.⑴证明数列为等比数列,并求其通项公式;⑵若对任意且,不等式恒成立,求实数的取值范围;⑶令,证明:.
甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元.(1).把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2).为了使全程运输成本最小,汽车应以多大速度行驶?
如右下图,在长方体ABCD—A1B1C1D1中,已知AB=" 4," AD ="3," AA1= 2。 E、F分别是线段AB、BC上的点,且EB= FB=1.(1) 求二面角C—DE—C1的余弦值;(2) 求直线EC1与FD1所成的余弦值.
在中,分别是角的对边,且
82615980
(Ⅰ)求的面积;(Ⅱ)若,求角。
已知平面直角坐标系中点F(1,0)和直线,动圆M过点F且与直线相切。(1)求M的轨迹L的方程;(2)过点F作斜率为1的直线交曲线L于A、B两点,求|AB|的值。
已知:集合M是满足下列性质的函数f(x)的全体:在定义域内存在x,使得f(x+1)=f(x)+f(1)成立。(1)函数f(x)=是否属于集合M?说明理由;(2)设函数f(x)=lg,求实数a的取值范围;(3)证明:函数f(x)=2+xM。