如图,四棱锥S-ABCD的所有棱长均为1米,一只小虫从S点出发沿四棱锥爬行,若在每顶点处选择不同的棱都是等可能的.设小虫爬行n米后恰回到S点的概率为Pn(n≥2,n∈N).(1)求P2,P3的值;(2)求证:3Pn+1+Pn=1(n≥2,n∈N);(3)求证:P2+P3+…+Pn>(n≥2,n∈N).
已知集合,集合.(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.
化简、求值:(1); (2)计算
已知集合,集合,集合(1)求;(2)若,求实数的取值范围;
对于函数与常数,若恒成立,则称为函数的一个“P数对”:设函数的定义域为,且.(1)若是的一个“P数对”,且,,求常数的值;(2)若(1,1)是的一个“P数对”,求;(3)若()是的一个“P数对”,且当时,,求k的值及区间上的最大值与最小值.
已知圆C:,直线l:.(1)求证:对直线l与圆C总有两个不同交点;(2)设l与圆C交于不同两点A、B,求弦AB的中点M的轨迹方程;(3)若定点分弦所得向量满足,求此时直线l的方程.