对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知(,为自然对数的底数),(1)求的递增区间;(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。
几何证明选讲 如图,已知、是圆的两条弦,且是线段的垂直平分线,已知,求线段的长度.
(本小题共12分)已知函数(Ⅰ)当=3时,求函数在(1, )的切线方程(Ⅱ)求函数的极值
(本小题共12分)已知椭圆过点,且离心率。(Ⅰ)求椭圆方程;(Ⅱ)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围。
(本小题共12分)如图,已知⊥平面,∥,是正三角形,,且是的中点(1)求证:∥平面;(2)求证:平面BCE⊥平面.
(本小题共12分) 已知向量,函数.(Ⅰ)求函数的最小正周期;(Ⅱ)已知、、分别为内角、、的对边, 其中为锐角,,且,求和的面积.