对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知(,为自然对数的底数),(1)求的递增区间;(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。
(本小题满分10分)已知函数的图象过原点,且在、处取得极值. (Ⅰ)求函数的单调区间及极值; (Ⅱ)若函数与的图象有且仅有一个公共点,求实数的取值范围.
(本小题满分10分)已知,, 且 (1) 求函数的解析式; (2) 当时, 的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.
(本小题满分10分)某港口的水深(米)是时间(,单位:小时)的函数,下面是每天时间与水深的关系表:
经过长期观测,可近似的看成是函数 (1)根据以上数据,求出的解析式 (2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
(本小题满分8分)已知,,当为何值时, (1) 与垂直? (2) 与平行?平行时它们是同向还是反向?
(满分8分)已知的值.