已知命题:方程表示焦点在轴上的椭圆;命题:双曲线的离心率.若或为真命题,且为假命题,求实数的取值范围.
已知椭圆过点,且离心率为.斜率为的直线与椭圆交于A、B两点,以为底边作等腰三角形,顶点为. (1)求椭圆的方程; (2)求△的面积.
在某次体检中,有6位同学的平均体重为65公斤.用表示编号为的同学的体重,且前5位同学的体重如下:
(1)求第6位同学的体重及这6位同学体重的标准差; (2)从前5位同学中随机地选2位同学,求恰有1位同学的体重在区间中的概率.
菱形的边长为3,与交于,且.将菱形沿对角线折起得到三棱锥(如图),点是棱的中点,. (1)求证:平面平面; (2)求三棱锥的体积.
已知等比数列为正项递增数列,且,,数列. (1)求数列的通项公式; (2),求.
已知,不等式的解集为. (1)求的值; (2)若对一切实数恒成立,求实数的取值范围.