解关于的不等式: ()
某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大?
已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,其值为正,而当x∈(-∞,-2)∪(6,+∞)时,其值为负.(1)求实数a,b的值及函数f(x)的表达式;(2)设F(x)=-f(x)+4(k+1)x+2(6k-1),问k取何值时,函数F(x)的值恒为负值?
函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求a的取值范围.(2)当x∈[-2,2]时,f(x)≥a恒成立,求a的取值范围.
已知不等式ax2+bx+c>0的解集为(,),且0<<,求不等式cx2+bx+a<0的解集.
若不等式2x-1>m(x2-1)对满足|m|≤2的所有m都成立,求x的取值范围.