对于函数与常数a,b,若恒成立,则称(a,b)为函数的一个“P数对”:设函数的定义域为,且f(1)=3.(1)若(a,b)是的一个“P数对”,且,,求常数a,b的值;(2)若(1,1)是的一个“P数对”,求;(3)若()是的一个“P数对”,且当时,,求k的值及茌区间上的最大值与最小值.
已知椭圆的焦距为2,且过点. (1)求椭圆C的方程; (2)设椭圆C的左右焦点分别为,,过点的直线与椭圆C交于两点. ①当直线的倾斜角为时,求的长; ②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.
如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点, (1)求椭圆的方程; (2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
已知椭圆经过点,且两焦点与短轴的两个端点的连线构成一正方形. (1)求椭圆的方程; (2)直线与椭圆交于,两点,若线段的垂直平分线经过点,求 (为原点)面积的最大值.
已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率. (1)求椭圆的方程; (2)设为坐标原点,点、分别在椭圆和上,,求直线的方程.
在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1:,C2:. 设点P的轨迹为. (1)求C的方程; (2)设直线与C交于A,B两点.问k为何值时?此时的值是多少?