对于函数与常数a,b,若恒成立,则称(a,b)为函数的一个“P数对”:设函数的定义域为,且f(1)=3.(1)若(a,b)是的一个“P数对”,且,,求常数a,b的值;(2)若(1,1)是的一个“P数对”,求;(3)若()是的一个“P数对”,且当时,,求k的值及茌区间上的最大值与最小值.
已知命题:“函数在上单调递增。”,命题:“幂函数在上单调递减”。⑴若命题和命题同时为真,求实数的取值范围;⑵若命题和命题有且只有一个真命题,求实数的取值范围。
已知圆直线, (1)求直线恒过的定点; (2)判断直线被圆截得的弦长何时最长,何时最短?并求截得的弦长最短时,求的值以及最短长度。
已知直线和直线, (1)若⊥,求 (2)若∥,求
如图,ABCD是正方形,O是该正方形的中心,P是平面ABCD外一点,PO底面ABCD,E是PC的中点. 求证:(1)PA∥平面BDE; (2)平面EBD⊥平面PAC
;。 (3)求BC边的高