给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(1)求椭圆的方程及其“伴随圆”方程;(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的伴随圆相交于M、N两点,求弦MN的长;(3)点是椭圆的伴随圆上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:⊥.
(本小题满分13分) 若数列满足,为数列的前项和. (Ⅰ) 当时,求的值; (Ⅱ)是否存在实数,使得数列为等比数列?若存在,求出满足的条件;若不存在,说明理由.
(本小题满分14分) 在斜三棱柱中,侧面平面,. (I)求证:; (II)若M,N是棱BC上的两个三等分点, 求证:平面.
(本小题满分13分) 某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株. 现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:
(I)求的值 ; (II)若已知树干周长在30cm至40cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.
(本小题满分13分) 在△内,分别为角所对的边,成等差数列,且 . (I)求的值; (II)若,求的值.
已知全集U={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则Cu( MN)=()