如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且·=·.(1)求动点P的轨迹C的方程;(2)过点F的直线交轨迹C于A,B两点,交直线l于点M,已知=λ1,=λ2,求λ1+λ2的值.
在中,内角A、B、C所对的边分别为,其外接圆半径为6, (1)求; (2)求的面积的最大值。
设,函数,. (I)试讨论函数的单调性 (II)设,求证:有三个不同的实根.
如图,已知椭圆C:,经过椭圆的右焦点F且斜率为的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点. (I)是否存在,使对任意,总有成立?若存在,求出所有的值; (II)若,求实数的取值范围.
在数列中,,,其中. (I)求数列的通项公式; (II)求的最大值.
某大型工厂的车床有甲,乙,丙三个型号,分别占总数的,,,现在有三名工人各自独立选一台车床操作. (I)求他们选择的车床类型互不相同的概率; (II)设ξ为他们选择甲型或丙型车床的人数,求ξ的分布列及数学期望.