已知点B(1,0)是向量a的终点,向量b, c均以原点O为起点,且b=(-3,-4), c=(1,1)与向量a的关系为a=3b-2c,求向量a的起点坐标.
(本小题满分14分)已知函数的定义域为R, 且对于任意R,存在正实数,使得都成立.若,求的取值范围;当时,数列满足,.证明:;令,证明:.
(本小题满分14分)已知函数满足,对于任意R都有,且,令.(1)求函数的表达式;(2)求函数的单调区间;研究函数在区间上的零点个数.
(本小题满分14分)已知直线上有一个动点,过点作直线垂直于轴,动点在上,且满足 (为坐标原点),记点的轨迹为.(1)求曲线的方程;(2)若直线是曲线的一条切线, 当点到直线的距离最短时,求直线的方程.
(本小题满分14分)如图5,在三棱柱中,侧棱底面,为的中点,.(1) 求证:平面;(2)若四棱锥的体积为,求二面角的正切值.图5
(本小题满分12分)某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为元.
表1 表2(1) 求的值;(2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.