:已知函数,(1)若,且关于的方程有两个不同的正数解,求实数的取值范围;(2)设函数,满足如下性质:若存在最大(小)值,则最大(小)值与无关.试求的取值范围.
设全集为,集合,. (1)求如图阴影部分表示的集合; (2)已知,若,求实数的取值范围.
已知直线经过直线与直线的交点,且垂直于直线. (1)求直线的方程; (2)求直线关于原点对称的直线方程.
如果函数满足在集合上的值域仍是集合,则把函数称为N函数. 例如:就是N函数. (Ⅰ)判断下列函数:①,②,③中,哪些是N函数?(只需写出判断结果); (Ⅱ)判断函数是否为N函数,并证明你的结论; (Ⅲ)证明:对于任意实数,函数都不是N函数. (注:“”表示不超过的最大整数)
已知椭圆:的离心率为,右焦点为,右顶点在圆:上. (Ⅰ)求椭圆和圆的方程; (Ⅱ)已知过点的直线与椭圆交于另一点,与圆交于另一点.请判断是否存在斜率不为0的直线,使点恰好为线段的中点,若存在,求出直线的方程;若不存在,说明理由.
已知函数,其中为常数. (Ⅰ)若函数是区间上的增函数,求实数的取值范围; (Ⅱ)若在时恒成立,求实数的取值范围.