某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……,(510,515],由此得到样本的频率分布直方图,如图4所示.根据频率分布直方图,求(1)重量超过500 克的产品的频率;(2)重量超过500 克的产品的数量.
设函数其中,曲线在点处的切线方程为.(I)确定的值;(II)设曲线在点处的切线都过点(0,2).证明:当时,;(III)若过点(0,2)可作曲线的三条不同切线,求的取值范围.
设不等式组所表示的平面区域为Dn,记Dn内 的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).(1) 求证:数列{an}的通项公式是an=3n(n∈N*).(2) 记数列{an}的前n项和为Sn,且Tn=.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.
提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).
已知函数.(Ⅰ)求函数的定义域与最小正周期;(Ⅱ)设,若,求的大小.
设△的内角所对边的长分别为,且有.(Ⅰ)求角A的大小;(Ⅱ)若,,为的中点,求的长.