求过点且被圆所截得的弦长为的直线方程
(本题满分18分,第1小题6分,第2小题6分,第3小题6分) 对于定义在D上的函数,若同时满足 (Ⅰ)存在闭区间,使得任取,都有是常数); (Ⅱ)对于D内任意,当时总有,则称为“平底型”函数。 (1)判断是否是“平底型”函数?简要说明理由; (2)设是(1)中的“平底型”函数,若,对一切恒成立,求实数的范围; (3)若是“平底型”函数,求和满足的条件,并说明理由。
(本题满分16分,第1小题5分,第2小题6分,第3小题5分) 已知函数,其中为常数,且 (1)若是奇函数,求的取值集合A; (2)(理)当时,设的反函数为,且函数的图像与的图像关于对称,求的取值集合B; (文)当时,求的反函数; (3)(理)对于问题(1)(2)中的A、B,当时,不等式恒成立,求的取值范围。 (文)对于问题(1)中的A,当时,不等式恒成立,求的取值范围。
(本题满分14分,第1小题5分,第2小题9分) 一校办服装厂花费2万元购买某品牌运动装的生产与销售权,根据以往经验,每生产1百套这种品牌运动装的成本为1万元,每生产x(百套)的销售额R(x)(万元)满足: (1)该服装厂生产750套此种品牌运动装可获得利润多少万元? (2)该服装厂生产多少套此种品牌运动装利润最大?此时,利润是多少万元?
(本题满分14分,第1小题8分,第2小题6分) (理)的周长为。 (1)求函数的解析式 ,并写出函数的定义域; (2)求函数的值域。 (文)设函数 (1)求函数的最大值和及相应的的值; (2)设A,B,C为的三个内角,,求角C的大小及边的长。
(本题满分12分,第1小题6分,第小题6分) 设函数的定义域为集合A,函数的定义域为集合B。 (1)求A∩B; (2)若,求实数的取值范围。