(本小题满分12分)如图,已知直平行六面体ABCD-A1B1C1D1中,AD⊥BD,AD=BD=a,E是CC1的中点,A1D⊥BE.(I)求证:A1D⊥平面BDE;(II)求二面角B―DE―C的大小;
已知抛物线:和点,若抛物线上存在不同两点、满足. (1)求实数的取值范围; (2)当时,抛物线上是否存在异于、的点,使得经过、、三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.
如图,四棱锥中,平面,与底面所成的角为,底面为直角梯形,, (1)求证:平面平面; (2)在线段上是否存在点,使与平面所成的角为?若存在,确定点的位置;若不存在,说明理由.
已知函数f(x)=sin2xsinφ+cos2xcosφ-sin(0<φ<π),其图象过点. (1)求φ的值; (2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在上的最大值和最小值.
(1)求不等式的解集; (2)已知,求证:.
在直角坐标系中,直线的参数方程为(t为参数).在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为 (1)求直线及圆的直角坐标方程; (2)设圆与直线交于点.若点的坐标为(3,),求.