(本小题满分12分)如图1所示的梯形中,,,且,如图2,沿将四边形折起,使得面与面垂直,为的中点. (Ⅰ)求证:平面平面 (Ⅱ)求证:.
已知椭圆C:的长轴长为,离心率.Ⅰ)求椭圆C的标准方程;Ⅱ)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于不同的两点E,F(E在B,F之间),且OBE与OBF的面积之比为,求直线的方程.
已知函 数.(1)若曲线在点处的切线与直线垂直,求函数的单调区间;(2)若对于都有成立,试求的取值范围;(3)记.当时,函数在区间上有两个零点,求实数的取值范围.
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.(1)求证:BD⊥FG;(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.(3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.(1)随机选取1件产品,求能够通过检测的概率;(2)随机选取3件产品,其中一等品的件数记为,求的分布列;(3)随机选取3件产品,求这三件产品都不能通过检测的概率.
在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c =, (1)求角C的大小;(2)求△ABC的面积.