(本小题满分12分)已知等差数列{an}的首项,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4(1)若a1=2,设,求数列{cn}的前n项的和Tn;(2)在(1)的条件下,若有的最大值.
已知命题p:||≤ 2;命题.若是的必要而不充分条件,求实数的取值范围.
已知函数满足. (1)求常数的值; (2)求使成立的的取值范围.
下图是利用计算机作图软件在直角坐标平面上绘制的一列抛物线和一列直线,在焦点为的抛物线列中,是首项和公比都为的等比数列,过作斜率2的直线与相交于和(在轴的上方,在轴的下方). 证明:的斜率是定值; 求、、、、所在直线的方程; 记的面积为,证明:数列是等比数列,并求所有这些三角形的面积的和.
如图,四棱柱中, 侧棱底面,,,,为棱的中点. (1)证明:; (2)求异面直线与所成角的大小.(结果用反三角函数值表示)
已知椭圆上存在两点、关于直线对称,求的取值范围.