(本小题满分12分)已知等差数列{an}的首项,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4(1)若a1=2,设,求数列{cn}的前n项的和Tn;(2)在(1)的条件下,若有的最大值.
选修4一4:坐标系与参数方程在直角坐标系中,圆:=经过伸缩变换后得到曲线.以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为·(1)求曲线的直角坐标方程及直线的直角坐标方程;(2)在上求一点,使点到直线的距离最小,并求出最小距离.
选修4一1:几何证明选讲如图,是圆的直径,弦于点,是延长线上一点,切圆于,交于.(1)求证:为等腰三角形;(2)求线段的长.
已知函数().(1)若,求曲线在点处的切线方程;(2)若不等式对任意恒成立,求实数的取值范围;
已知椭圆的两个焦点为、,离心率为,直线与椭圆相交于、两点,且满足,,为坐标原点.(1)求椭圆的方程;(2)证明:的面积为定值.
如图,在四棱锥中,⊥平面,, ,,,为线段上的点,(1)证明:⊥平面;(2)若是的中点,求与平面所成的角的正切值.