为了加快城市经济发展,某市准备修建一座横跨南北的大桥.如图10所示,测量队在点A处观测河对岸水边有一点C,测得C在北偏东60°的方向上,沿河岸向东前行30米到达B处,测得C在北偏东45°的方向上,请你根据以上数据帮助该测量队计算出这条河的宽度(结果保留根号)。
如图,已知 ⊙ O 是四边形 ABCD 的外接圆,直线 AD , BC 相交于点 E , F 是弦 CD 的中点,延长直线 EF 交弦 AB 于点 G ,求证:
(1) ED ⋅ EA = EC ⋅ EB ;
(2) AG : GB = A E 2 : B E 2 .
如图,已知正方形 ABCD ,点 E 是 BC 边上一点,将 △ ABE 沿直线 AE 折叠,点 B 落在 F 处,连接 BF 并延长,与 ∠ DAF 的平分线相交于点 H ,与 AE , CD 分别相交于点 G , M ,连接 HC .
(1)求证: AG = GH ;
(2)若 AB = 3 , BE = 1 ,求点 D 到直线 BH 的距离;
(3)当点 E 在 BC 边上(端点除外)运动时, ∠ BHC 的大小是否变化?为什么?
如图所示,在 △ ABC 中, ∠ C = 90 ∘ , ∠ BAC = 30 ∘ , BC = 1 , D 为 BC 边上一点, tan ∠ ADC 是方程 3 x 2 + 1 x 2 - 5 x + 1 x = 2 的一个较大的根,求 CD 的长
如图,已知 △ ABC 中, ∠ A = 60 ∘ , ⊙ O 是 △ ABC 的外接圆, AD 是 BC 边上的高, H 是 △ ABC 的垂心,连接 OA , OB , OC ,连接 OH 并延长交 AB 于点 M ,交 AC 于点 N ,求证:
(1) ∠ BAD = ∠ OAC ;
(2) AH 等于 △ ABC 外接圆半径;
(3) MH = NO .
如图,直线 y = - 3 4 x + 3 与 x 轴交于点 C ,与 y 轴交于点 B ,抛物线 y = a x 2 + 3 4 x + c 经过 B , C 两点.
(1)求抛物线的解析式;
(2)如图,点 E 是直线 BC 上方抛物线上的一动点,当 △ BEC 面积最大时,请求出点 E 的坐标和 △ BEC 面积的最大值?