[(3ab)2-(1-2ab)(-1-2ab)-1]÷(-ab),其中a=,b=
某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:
(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图 2 ) ;
(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?
(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?
(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
图1是一商场的推拉门,已知门的宽度 AD = 2 米,且两扇门的大小相同(即 AB = CD ) ,将左边的门 AB B 1 A 1 绕门轴 A A 1 向里面旋转 37 ° ,将右边的门 CD D 1 C 1 绕门轴 D D 1 向外面旋转 45 ° ,其示意图如图2,求此时 B 与 C 之间的距离(结果保留一位小数).(参考数据: sin 37 ° ≈ 0 . 6 , cos 37 ° ≈ 0 . 8 , 2 ≈ 1 . 4 )
某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元 / 千克,乙种水果18元 / 千克.6月份,这两种水果的进价上调为:甲种水果10元 / 千克,乙种水果20元 / 千克.
(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?
(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?
如图,已知一次函数 y 1 = k 1 x + b ( k 1 ≠ 0 ) 与反比例函数 y 2 = k 2 x ( k 2 ≠ 0 ) 的图象交于 A ( 4 , 1 ) , B ( n , − 2 ) 两点.
(1)求一次函数与反比例函数的解析式;
(2)请根据图象直接写出 y 1 < y 2 时 x 的取值范围.
已知二次函数 y = − x 2 + bx + c + 1 ,
①当 b = 1 时,求这个二次函数的对称轴的方程;
②若 c = − 1 4 b 2 − 2 b ,问: b 为何值时,二次函数的图象与 x 轴相切?
③若二次函数的图象与 x 轴交于点 A ( x 1 , 0 ) , B ( x 2 , 0 ) ,且 x 1 < x 2 , b > 0 ,与 y 轴的正半轴交于点 M ,以 AB 为直径的半圆恰好过点 M ,二次函数的对称轴 l 与 x 轴、直线 BM 、直线 AM 分别交于点 D 、 E 、 F ,且满足 DE EF = 1 3 ,求二次函数的表达式.