图1是一商场的推拉门,已知门的宽度 AD = 2 米,且两扇门的大小相同(即 AB = CD ) ,将左边的门 AB B 1 A 1 绕门轴 A A 1 向里面旋转 37 ° ,将右边的门 CD D 1 C 1 绕门轴 D D 1 向外面旋转 45 ° ,其示意图如图2,求此时 B 与 C 之间的距离(结果保留一位小数).(参考数据: sin 37 ° ≈ 0 . 6 , cos 37 ° ≈ 0 . 8 , 2 ≈ 1 . 4 )
一家用电器开发公司研制出一种新型的电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销售量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件. (1)求出月销售量y(万件)与销售单价x(元)之间的函数关系式(不必写出x的取值范围); (2)求出月销售利润z(万元)(利润=售价-成本价)与销售单价x(元)之间的函数关系式(不必写出x的取值范围). (3)若某月利润为350万元时,则该月销售量为多少万件,此时销售单价为多少元?
如图所示,在△中,,,将绕点沿逆时针方向旋转得到. (1)线段的长是 ,的度数是 ; (2)连接,求证:四边形是平行四边形.
如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m. (1)请写出抛物线的开口方向、顶点坐标、对称轴. (2)请求出球飞行的最大水平距离. (3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式
阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-,x1·x2=.请根据该材料解题:已知x1,x2是方程x2+6x+3=0的两实数根,求和的值.
如图,方格纸中的每个都是边长为1的正方形,将△OAB绕点O按顺时针方向旋转90°得到△OA′B′. (1)在给定的方格纸中画出△OA′B′; (2)求出OA,AA′的长为.