.已知数列是等比数列,是等差数列,且,数列满足,其前四项依次为1,,,2,求数列的前n项和。
已知极坐标系的原点在直角坐标系的原点处,极轴为轴正半轴,直线的参数方程为(为参数),曲线的极坐标方程为.(1)写出的直角坐标方程,并说明是什么曲线?(2)设直线与曲线相交于、两点,求.
如图所示,是⊙直径,弦的延长线交于,垂直于的延长线于.求证:(1);(2).
设函数(),其导函数为.(1)当时,求的单调区间;(2)当时,,求证:.
设分别是椭圆的左,右焦点.(1)若是椭圆在第一象限上一点,且,求点坐标;(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.
甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次任意抽取3道题,独立作答,然后由乙回答剩余3题,每人答对其中的2题就停止答题,即闯关成功。已知6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是.(1)求甲、乙至少有一人闯关成功的概率;(2)设甲答对题目的个数为,求的分布列及数学期望.