..(本小题满分14分)坐标法是解析几何中最基本的研究方法,坐标法是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.请利用坐标法解决以下问题:(Ⅰ)在直角坐标平面内,已知,对任意,试判断的形状;(Ⅱ)在平面内,已知中,,为的中点,交于,求证:.
已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.
设数列的前项和为,对任意的正整数,都有成立,记.(1)(1)求数列与数列的通项公式;(2)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由.(3)记,设数列的前项和为,求证:对于都有
已知等比数列中各项均为正,有,,等差数列中,,点在直线上.(1)求和的值;(2)求数列,的通项和;(3)设,求数列的前n项和.
如图,要计算西湖岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两点,现测得,,,,,求两景点B与C的距离.
已知向量=(3,-4),=(6,-3),=(5-m,-3-m).(1)若点A,B,C不能构成三角形,求实数m满足的条件;若△ABC为直角三角形,求实数m的值.