已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=2,任取a,b∈[﹣1,1],a+b≠0,都有>0成立.(1)证明函数f(x)在[﹣1,1]上是单调增函数.(2)解不等式f(x)<f(x2).(3)若对任意x∈[﹣1,1],函数f(x)≤2m2﹣2am+3对所有的a∈[0,]恒成立,求m的取值范围.
已知函数,曲线在点处的切线方程为. (1)求的值; (2)求在上的最大值.
给定两个命题,:对任意实数都有恒成立;:.如果∨为真命题,∧为假命题,求实数的取值范围.
在中,角所对边分别为,已知,且最长边的边长为.求: (1)角的正切值及其大小; (2)最短边的长.
数列的前项和为,. (1)求数列的通项公式; (2)设求数列的前项和.
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录如下:、、、. (1)经判断点,在抛物线上,试求出的标准方程; (2)求抛物线的焦点的坐标并求出椭圆的离心率; (3)过的焦点直线与椭圆交不同两点且满足,试求出直线的方程.