.(本小题满分16分)已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(1)求椭圆的方程;(2)设,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.
已知函数,,. (1),,求值域; (2),解关于的不等式.
如图,已知海岛到海岸公路的距离为,,间的距离为,从到,必须先坐船到上的某一点,船速为,再乘汽车到,车速为,记. (1)试将由到所用的时间表示为的函数; (2)问为多少时,由到所用的时间最少?
已知△的面积为,且. (1)求的值; (2)若,,求△ABC的面积.
已知向量,,. (1)求函数的单调递减区间及其图象的对称轴方程; (2)当时,若,求的值.
(本小题满分14分)若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数). (1)求的极值; (2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.