(本小题满分13分)一个袋中装有个形状大小完全相同的小球,球的编号分别为.(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;(Ⅱ)若从袋中每次随机抽取个球,有放回的抽取3次,求恰有次抽到号球的概率;(Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.
已知函数. (Ⅰ)求的最小正周期; (Ⅱ)求在区间上的最大值和最小值.
((本小题满分12分) 设函数. (Ⅰ)当时,过原点的直线与函数的图象相切于点P,求点P的坐标; (Ⅱ)当时,求函数的单调区间; (Ⅲ)当时,设函数,若对于],[0,1] 使≥成立,求实数b的取值范围.(是自然对数的底,)
(.(本小题满分12分) 如图,焦距为2的椭圆E的两个顶点分别为和,且与共线. (Ⅰ)求椭圆E的标准方程; (Ⅱ)若直线与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.
((本小题满分12分) 数列各项均为正数,其前项和为,且满足. (Ⅰ)求证数列为等差数列,并求数列的通项公式; (Ⅱ)设, 求数列的前n项和,并求使对所 有的都成立的最大正整数m的值.
((本小题满分12分) 如图,在四棱锥中,侧棱底面,底面为矩形,,为的上一点,且,为PC的中点. (Ⅰ)求证:平面AEC; (Ⅱ)求二面角的余弦值.