某校团委发起了“传箴言”活动,初三(2)班团支部对该班全体团员在一个月内所发箴言条的情况进行了统计。结果显示发3条箴言的团员占全体团员的25%,并制成了如下不完整的统计图:所发箴言条数条形统计图(1)求该班团员中发4条箴言的有多少人?(2)如果发了3条箴言的同学中有两位男同学,发了4箴言的同学中有三位女同学。现从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会。你用列表法或者树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率
结合西昌市创建文明城市要求,某小区业主委员会决定把一块长 80 m ,宽 60 m 的矩形空地建成花园小广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的直角三角形),空白区域为活动区,且四周出口宽度一样,其宽度不小于 36 m ,不大于 44 m ,预计活动区造价60元 / m 2 ,绿化区造价50元 / m 2 ,设绿化区域较长直角边为 xm .
(1)用含 x 的代数式表示出口的宽度;
(2)求工程总造价 y 与 x 的函数关系式,并直接写出 x 的取值范围;
(3)如果业主委员会投资28.4万元,能否完成全部工程?若能,请写出 x 为整数的所有工程方案;若不能,请说明理由.
(4)业主委员会决定在(3)设计的方案中,按最省钱的一种方案,先对四个绿化区域进行绿化,在实际施工中,每天比原计划多绿化 11 m 2 ,结果提前4天完成四个区域的绿化任务,问原计划每天绿化多少 m 2 .
阅读材料:基本不等式 ab ⩽ a + b 2 ( a > 0 , b > 0 ) ,当且仅当 a = b 时,等号成立.其中我们把 a + b 2 叫做正数 a 、 b 的算术平均数, ab 叫做正数 a 、 b 的几何平均数,它是解决最大(小 ) 值问题的有力工具.
例如:在 x > 0 的条件下,当 x 为何值时, x + 1 x 有最小值,最小值是多少?
解: ∵ x > 0 , 1 x > 0 ∴ x + 1 x 2 ⩾ x ⋅ 1 x 即是 x + 1 x ⩾ 2 x ⋅ 1 x
∴ x + 1 x ⩾ 2
当且仅当 x = 1 x 即 x = 1 时, x + 1 x 有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)若 x > 0 ,函数 y = 2 x + 1 x ,当 x 为何值时,函数有最值,并求出其最值.
(2)当 x > 0 时,式子 x 2 + 1 + 1 x 2 + 1 ⩾ 2 成立吗?请说明理由.
已知: ΔABC 内接于 ⊙ O , AB 是 ⊙ O 的直径,作 EG ⊥ AB 于 H ,交 BC 于 F ,延长 GE 交直线 MC 于 D ,且 ∠ MCA = ∠ B ,求证:
(1) MC 是 ⊙ O 的切线;
(2) ΔDCF 是等腰三角形.
▱ ABCO 在平面直角坐标系中的位置如图所示,直线 y 1 = kx + b 与双曲线 y 2 = m x ( m > 0 ) 在第一象限的图象相交于 A 、 E 两点,且 A ( 3 , 4 ) , E 是 BC 的中点.
(1)连接 OE ,若 ΔABE 的面积为 S 1 , ΔOCE 的面积为 S 2 ,则 S 1 = S 2 (直接填“ > ”“ < ”或“ = ” ) ;
(2)求 y 1 和 y 2 的解析式;
(3)请直接写出当 x 取何值时 y 1 > y 2 .
西昌市教科知局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:
(1) 年抽取的调查人数最少; 年抽取的调查人数中男生、女生人数相等;
(2)求图2中“短跑”在扇形图中所占的圆心角 α 的度数;
(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?
(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?