阅读材料:基本不等式 ab ⩽ a + b 2 ( a > 0 , b > 0 ) ,当且仅当 a = b 时,等号成立.其中我们把 a + b 2 叫做正数 a 、 b 的算术平均数, ab 叫做正数 a 、 b 的几何平均数,它是解决最大(小 ) 值问题的有力工具.
例如:在 x > 0 的条件下,当 x 为何值时, x + 1 x 有最小值,最小值是多少?
解: ∵ x > 0 , 1 x > 0 ∴ x + 1 x 2 ⩾ x ⋅ 1 x 即是 x + 1 x ⩾ 2 x ⋅ 1 x
∴ x + 1 x ⩾ 2
当且仅当 x = 1 x 即 x = 1 时, x + 1 x 有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)若 x > 0 ,函数 y = 2 x + 1 x ,当 x 为何值时,函数有最值,并求出其最值.
(2)当 x > 0 时,式子 x 2 + 1 + 1 x 2 + 1 ⩾ 2 成立吗?请说明理由.
如图,在△ABC中,∠C=90°,点D在AC上,DE⊥AB于点E, 若AC=8,BC=6,DE=3,求AD的长.
如图,已知⊙O的直径AB=6,且AB⊥弦CD于点E,若CD=2,求BE的长.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,四边形是平行四边形,抛物线过三点,与轴交于另一点.一动点以每秒1个单位长度的速度从点出发沿向点运动,运动到点停止,同时一动点从点出发,以每秒3个单位长度的速度沿向点运动,与点同时停止.(1)求抛物线的解析式;(2)若抛物线的对称轴与交于点,与轴交于点,当点运动时间为何值时,四边形是等腰梯形?(3)当为何值时,以为顶点的三角形与以点为顶点的三角形相似?
如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.