(本题满分分)为了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数的测试,将所得数据整理、分组后,画出频率分布直方图(如图).图中从左到右各小长方形面积之比为. 若第二组的频数为.(1) 求第二组的频率是多少?样本容量是多少?(2)若次数在以上(含次)为达标,试估计该学校全体高一学生的达标率是多少?
已知椭圆C:的离心率等于,点P在椭圆上。 (1)求椭圆的方程; (2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线:,使得与的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.
设函数的图像在处取得极值4. (1)求函数的单调区间; (2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.
如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,,点分别是线段的中点. (1)求证:平面平面; (2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.
右表是一个由正数组成的数表,数表中各行依次成等差数列,各列依次成等比数列,且公比都相等,已知 (1)求数列的通项公式; (2)设求数列的前项和。
已知向量, 当时,求函数的值域: (2)锐角中,分别为角的对边,若,求边.