已知椭圆C:的离心率等于,点P在椭圆上。(1)求椭圆的方程;(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线:,使得与的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.
(本小题满分12分)已知椭圆:()的离心率为,过右焦点且斜率为1的直线交椭圆于两点,为弦的中点。 (1)求直线(为坐标原点)的斜率; (2)设椭圆上任意一点,且,求的最大值和最小值.
(本小题满分12分)已知直三棱柱中,△为等腰直角三角形,∠=,且=,、、分别为、、的中点. (1)求证:∥平面; (2)求证:⊥平面; (3)求三棱锥的体积.
(本小题满分12分)设为坐标原点,点的坐标 (1)在一个盒子中,放有标号为的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为,求||的最大值,并求事件“||取到最大值”的概率; (2)若利用计算机随机在[,]上先后取两个数分别记为, 求:点在第一象限的概率.
(本小题满分12分)如图:,. (1)求的大小; (2)当时,判断的形状,并求的值.
(本小题满分10分) 已知函数. (1)若不等式的解集为,求实数a的值; (2)在(1)的条件下,若存在实数使成立,求实数的取值范围.